Skip to content

Integration by Parts

Tags
Calculus
Cegep/2
Word count
362 words
Reading time
3 minutes

Method of reversing an application of product rule to find the antiderivative
Abbr. IBP

To find the antiderivative of abdx,

  1. Set u and dv such that finding du and v is the easiest.
  2. Find du by differentiation and v by integration.
  3. Substitute uvvdu.

+ Priority of $u$

  1. Logarithmic
  2. Inverse trigonometric
  3. Algebraic
  4. Trigonometric
  5. Exponential

Proof

f(x)g(x)=(f(x)g(x)+f(x)g(x))dxf(x)g(x)dx=f(x)g(x)f(x)g(x)dx

Let u=f(x) and v=g(x), then du=f(x)dx and dv=g(x)dx.
Then, by substitution,

udv=uvvdu

Examples

lnxx2dx

Let u=ln(x) and dv=1x2dx,
then du=1xdx and v=1x.

lnxx2dx=1xlnx(1x)(1x)dx=1xlnx+1x2dx=1xlnx1x+c

arcsinxdx

Let u=arcsinx and dv=dx,
then du=dx1x2 and v=x.
By IBP,

arcsinxdx=xarcsinxx1x2dx=xarcsinx+12duudx=xarcsinx+u12+c=xarcsinx+1x2+c

sec3xdx

Let u=secx and dv=sec2xdx,
then du=secxtanxdx and v=tanx.
By IBP,

sec3xdx=secxtanxsecxtan2xdx=secxtanxsecx(sec2x1)dx=secxtanxsec3xdx+secxdx2sec3xdx=secxtanx+ln|secx+tanx|+csec3xdx=12(secxtanx+ln|secx+tanx|)+c

Contributors

Changelog